World's simplest math tool. The 13th, 14th, and 51st have respectively 157, 183, and 24,862,048 digits. The First 10,000 Primes. 53597 53609 53611 53617 53623 53629 53633 53639 53653 53657
18149 18169 18181 18191 18199 18211 18217 18223 18229 18233
52363 52369 52379 52387 52391 52433 52453 52457 52489 52501
43201 43207 43223 43237 43261 43271 43283 43291 43313 43319
By Euclid's theorem, there are an infinite number of prime numbers.Subsets of the prime numbers may be generated with various formulas for primes.The first 1000 primes are listed below, followed by lists of notable types of prime . 6481 6491 6521 6529 6547 6551 6553 6563 6569 6571
If the sum of a number's digits is a multiple of 3, that number can be divided by 3. 10009 10037 10039 10061 10067 10069 10079 10091 10093 10099
70457 70459 70481 70487 70489 70501 70507 70529 70537 70549
63727 63737 63743 63761 63773 63781 63793 63799 63803 63809
51817 51827 51829 51839 51853 51859 51869 51871 51893 51899
m 38723 38729 38737 38747 38749 38767 38783 38791 38803 38821
102329 102337 102359 102367 102397 102407 102409 102433 102437 102451
As of 2018[update], there are 51 known Mersenne primes. 31267 31271 31277 31307 31319 31321 31327 31333 31337 31357
Pick a random card from a deck. 92041 92051 92077 92083 92107 92111 92119 92143 92153 92173
6373 6379 6389 6397 6421 6427 6449 6451 6469 6473
13217 13219 13229 13241 13249 13259 13267 13291 13297 13309
92671 92681 92683 92693 92699 92707 92717 92723 92737 92753
So the largest 5 digit no is 99999. 4663 4673 4679 4691 4703 4721 4723 4729 4733 4751
57973 57977 57991 58013 58027 58031 58043 58049 58057 58061
But one is regarded as a special or unique number because 1 divides evenly by 1 only. A Prime Number is: (if we can make it by multiplying other whole numbers it is a Composite Number) Here we see it in action: 2 is Prime, 3 is Prime, 4 is Composite (=22), 5 is Prime, and so on. 60727 60733 60737 60757 60761 60763 60773 60779 60793 60811
Primes that become a different prime when their decimal digits are reversed. 21961 21977 21991 21997 22003 22013 22027 22031 22037 22039
8389 8419 8423 8429 8431 8443 8447 8461 8467 8501
- Just search on any (sufficiently large) public list of prime numbers. 16693 16699 16703 16729 16741 16747 16759 16763 16787 16811
Answer (1 of 4): Brute force solution, using the J programming language: +/m=.1 p:n=.1e5 to 1e6 68906 The answer is that there are 68,906 6-digit primes. So 11 is prime. 75721 75731 75743 75767 75773 75781 75787 75793 75797 75821
[2] That means 95,676,260,903,887,607 primes[3] (nearly 1017), but they were not stored. Some facts: The only even prime number is 2. 13627 13633 13649 13669 13679 13681 13687 13691 13693 13697
18757 18773 18787 18793 18797 18803 18839 18859 18869 18899
56993 56999 57037 57041 57047 57059 57073 57077 57089 57097
87869 87877 87881 87887 87911 87917 87931 87943 87959 87961
The First 100,000 Twin Primes. 1663 1667 1669 1693 1697 1699 1709 1721 1723 1733
) 29453 29473 29483 29501 29527 29531 29537 29567 29569 29573
So 5 is prime. 18661 18671 18679 18691 18701 18713 18719 18731 18743 18749
32429 32441 32443 32467 32479 32491 32497 32503 32507 32531
120 numbers Final answer: from the given digits 1,2,3,4,5 we can for 120 numbers which contain 5 digits. 1597 1601 1607 1609 1613 1619 1621 1627 1637 1657
x 46103 46133 46141 46147 46153 46171 46181 46183 46187 46199
38557 38561 38567 38569 38593 38603 38609 38611 38629 38639
83401 83407 83417 83423 83431 83437 83443 83449 83459 83471
Solved Examples. Five has just two factors: 1 and 5. Explanation: Digits of the number - {1, 2} But, only 2 is prime number. Three such primes are known; it is not known whether there are more.[13]. The number of palindromic primes less than a given number are illustrated in the plot above. P. Cox, Primes is in P P. J. Davis & R. Hersh, The Mathematical Experience, The Prime Number Theorem 42961 42967 42979 42989 43003 43013 43019 43037 43049 43051
58727 58733 58741 58757 58763 58771 58787 58789 58831 58889
56437 56443 56453 56467 56473 56477 56479 56489 56501 56503
First Ten Natural Prime Numbers are - 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 Factors of 1 are =1 ( Not Prime Number because it has only one factor) Factors of 2 are = 1 and 2 ( Prime Number because it has only two factors ) 13709 13711 13721 13723 13729 13751 13757 13759 13763 13781
Primes that are the number of partitions of a set with n members. 92369 92377 92381 92383 92387 92399 92401 92413 92419 92431
Primes p for which there exist n>0 such that p divides n! n + 1. 69313 69317 69337 69341 69371 69379 69383 69389 69401 69403
Since its last digit is not 0 or 5, the number is also not divisible by 5. 60373 60383 60397 60413 60427 60443 60449 60457 60493 60497
999,983 = largest 6-digit prime number; 999,999 = repdigit. Calculator Use. 78317 78341 78347 78367 78401 78427 78437 78439 78467 78479
2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 8513 8521 8527 8537 8539 8543 8563 8573 8581 8597
25801 25819 25841 25847 25849 25867 25873 25889 25903 25913
A prime number is a whole number greater than 1 whose only factors are 1 and itself. 25p 1 1 (mod p2): 2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801. 13789 13799 13807 13829 13831 13841 13859 13873 13877 13879
27697 27701 27733 27737 27739 27743 27749 27751 27763 27767
31723 31727 31729 31741 31751 31769 31771 31793 31799 31817
46751 46757 46769 46771 46807 46811 46817 46819 46829 46831
Some sequences have alternate names: 4n+1 are Pythagorean primes, 4n+3 are the integer Gaussian primes, and 6n+5 are the Eisenstein primes (with 2 omitted). 77263 77267 77269 77279 77291 77317 77323 77339 77347 77351
our costs. Randomize the order of cards in a deck. 93187 93199 93229 93239 93241 93251 93253 93257 93263 93281
33119 33149 33151 33161 33179 33181 33191 33199 33203 33211
82657 82699 82721 82723 82727 82729 82757 82759 82763 82781
Some sources only list the smallest prime in each cycle, for example, listing 13, but omitting 31 (OEIS really calls this sequence circular primes, but not the above sequence): 2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933, 1111111111111111111, 11111111111111111111111 (OEIS:A016114). A prime number is a whole number greater than 1 whose only factors are 1 and itself. 44203 44207 44221 44249 44257 44263 44267 44269 44273 44279
20269 20287 20297 20323 20327 20333 20341 20347 20353 20357
So 2 is prime (in fact two is the only even prime number!) 8681 8689 8693 8699 8707 8713 8719 8731 8737 8741
List of prime numbers up to 1 000 000 000 000 (1000 billion) Prime number per page : Export as text. Prime Numbers Chart and Calculator. b 59921 59929 59951 59957 59971 59981 59999 60013 60017 60029
22961 22963 22973 22993 23003 23011 23017 23021 23027 23029
97651 97673 97687 97711 97729 97771 97777 97787 97789 97813
16273 16301 16319 16333 16339 16349 16361 16363 16369 16381
39341 39343 39359 39367 39371 39373 39383 39397 39409 39419
Any number greater than 5 that ends in a 5 can be divided by 5. 63823 63839 63841 63853 63857 63863 63901 63907 63913 63929
35311 35317 35323 35327 35339 35353 35363 35381 35393 35401
Prime and Composite Numbers Prime Numbers - Advanced Prime Number Lists. All Rights Reserved. Write the smallest 5-digit number and express it in the form of its prime factors by tree diagram. 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 199, 311, 337, 373, 733, 919, 991, 1111111111111111111, 11111111111111111111111 (OEIS:A003459). 44111 44119 44123 44129 44131 44159 44171 44179 44189 44201
7211 7213 7219 7229 7237 7243 7247 7253 7283 7297
For every prime number p, there exists a prime number p' such that p' is greater than p. This mathematical proof, which was demonstrated in ancient times by the Greek mathematician Euclid, validates the concept that there is no "largest" prime number. 2, 3, 5, 7, 13, 17, 19, 37, 73, 97, 109, 163, 193, 257, 433, 487, 577, 769, 1153, 1297, 1459, 2593, 2917, 3457, 3889, 10369, 12289, 17497, 18433, 39367, 52489, 65537, 139969, 147457 (OEIS:A005109). 3 72251 72253 72269 72271 72277 72287 72307 72313 72337 72341
92177 92179 92189 92203 92219 92221 92227 92233 92237 92243
1019 1021 1031 1033 1039 1049 1051 1061 1063 1069
15329 15331 15349 15359 15361 15373 15377 15383 15391 15401
(OEIS A068652 ). A prime number is a whole number greater than 1 whose only factors are 1 and itself. 70823 70841 70843 70849 70853 70867 70877 70879 70891 70901
19577 19583 19597 19603 19609 19661 19681 19687 19697 19699
24781 24793 24799 24809 24821 24841 24847 24851 24859 24877
68821 68863 68879 68881 68891 68897 68899 68903 68909 68917
52711 52721 52727 52733 52747 52757 52769 52783 52807 52813
92569 92581 92593 92623 92627 92639 92641 92647 92657 92669
79843 79847 79861 79867 79873 79889 79901 79903 79907 79939
75539 75541 75553 75557 75571 75577 75583 75611 75617 75619
7649 7669 7673 7681 7687 7691 7699 7703 7717 7723
40801 40813 40819 40823 40829 40841 40847 40849 40853 40867
All integers (except 0 and 1) have at least two divisors - 1 and the number itself. Six has four factors: 1, 2, 3 and 6. The number 1 is neither prime nor composite. What are the conflicts in A Christmas Carol? 9539 9547 9551 9587 9601 9613 9619 9623 9629 9631
The number 0 is not a prime number. 24419 24421 24439 24443 24469 24473 24481 24499 24509 24517
7. 22129 22133 22147 22153 22157 22159 22171 22189 22193 22229
0 A Sophie Germain prime has a corresponding safe prime. 20359 20369 20389 20393 20399 20407 20411 20431 20441 20443
60037 60041 60077 60083 60089 60091 60101 60103 60107 60127
1 51131 51133 51137 51151 51157 51169 51193 51197 51199 51203
85369 85381 85411 85427 85429 85439 85447 85451 85453 85469
Next we test 3. 7, 23, 383, 32212254719, 2833419889721787128217599, 195845982777569926302400511, 4776913109852041418248056622882488319 (OEIS:A050918), Pages displaying short descriptions of redirect targets, Pages displaying wikidata descriptions as a fallback, Last edited on 21 February 2023, at 00:05, List of largest known primes and probable primes, "Irregular Primes and Cyclotomic Invariants", "Sequence A121091 (Smallest nexus prime of the form n^p - (n-1)^p, where p is an odd prime)", On-Line Encyclopedia of Integer Sequences, "Sequence A121616 (Primes of form (n+1)^5 - n^5)", "Sequence A121618 (Nexus primes of order 7 or primes of form n^7 - (n-1)^7)", "Mirimanoff's Congruence: Other Congruences", Interface to a list of the first 98 million primes, Thema: Fermatquotient B^(P1) == 1 (mod P^2), https://en.wikipedia.org/w/index.php?title=List_of_prime_numbers&oldid=1140625623, This page was last edited on 21 February 2023, at 00:05. As of 2018[update], this class of prime numbers also contains the largest known prime: M82589933, the 51st known Mersenne prime. 8221 8231 8233 8237 8243 8263 8269 8273 8287 8291
60509 60521 60527 60539 60589 60601 60607 60611 60617 60623
9461 9463 9467 9473 9479 9491 9497 9511 9521 9533
It has total 12 factors of which 220 is the biggest factor and the prime factors of 220 are 2, 5, 11. 74747 74759 74761 74771 74779 74797 74821 74827 74831 74843
So each of the five places can be similarly filled up in ten ways. 104549 104551 104561 104579 104593 104597 104623 104639 104651 104659
Two examples of twin prime numbers are: (3, 5); here 3, 5 are prime numbers and 4 is the composite number between them. Prime Numbers. For example, the first 5 prime numbers are 2, 3, 5, 7, and 11. 42569 42571 42577 42589 42611 42641 42643 42649 42667 42677
Roll. Primes that remain prime when the least significant decimal digit is successively removed. 48523 48527 48533 48539 48541 48563 48571 48589 48593 48611
102121 102139 102149 102161 102181 102191 102197 102199 102203 102217
72139 72161 72167 72169 72173 72211 72221 72223 72227 72229
30347 30367 30389 30391 30403 30427 30431 30449 30467 30469
22651 22669 22679 22691 22697 22699 22709 22717 22721 22727
19709 19717 19727 19739 19751 19753 19759 19763 19777 19793
Of the form (an1)/(a1) for fixed integer a. 87643 87649 87671 87679 87683 87691 87697 87701 87719 87721
72493 72497 72503 72533 72547 72551 72559 72577 72613 72617
102031 102043 102059 102061 102071 102077 102079 102101 102103 102107
84011 84017 84047 84053 84059 84061 84067 84089 84121 84127
Get started, freeCodeCamp is a donor-supported tax-exempt 501(c)(3) charity organization (United States Federal Tax Identification Number: 82-0779546). 40693 40697 40699 40709 40739 40751 40759 40763 40771 40787
68491 68501 68507 68521 68531 68539 68543 68567 68581 68597
This include the following: Of the form 3n, where is Mills' constant. You can also use our prime number calculator to show all the primes within a given range. 8747 8753 8761 8779 8783 8803 8807 8819 8821 8831
Prime Numbers List - A Chart of All Primes Up to 20,000 Quincy Larson Here's a list of all 2,262 prime numbers between zero and 20,000. 34267 34273 34283 34297 34301 34303 34313 34319 34327 34337
60821 60859 60869 60887 60889 60899 60901 60913 60917 60919
About First n Prime Numbers . Advertisement. 75083 75109 75133 75149 75161 75167 75169 75181 75193 75209
5099 5101 5107 5113 5119 5147 5153 5167 5171 5179
82013 82021 82031 82037 82039 82051 82067 82073 82129 82139
100483 100493 100501 100511 100517 100519 100523 100537 100547 100549
79397 79399 79411 79423 79427 79433 79451 79481 79493 79531
24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161 (OEIS:A000043), As of December2018[update], three more are known to be in the sequence, but it is not known whether they are the next: Where p and 2p + 1 are both prime. 78707 78713 78721 78737 78779 78781 78787 78791 78797 78803
79757 79769 79777 79801 79811 79813 79817 79823 79829 79841
30253 30259 30269 30271 30293 30307 30313 30319 30323 30341
Some Important Points about Prime Numbers 877 881 883 887 907 911 919 929 937 941
75983 75989 75991 75997 76001 76003 76031 76039 76079 76081
Necessary cookies are absolutely essential for the website to function properly. 55681 55691 55697 55711 55717 55721 55733 55763 55787 55793
30577 30593 30631 30637 30643 30649 30661 30671 30677 30689
25189 25219 25229 25237 25243 25247 25253 25261 25301 25303
12113 12119 12143 12149 12157 12161 12163 12197 12203 12211
19333 19373 19379 19381 19387 19391 19403 19417 19421 19423
96737 96739 96749 96757 96763 96769 96779 96787 96797 96799
Primes p such that ap 1 1 (mod p2) for fixed integer a > 1. 19801 19813 19819 19841 19843 19853 19861 19867 19889 19891
78203 78229 78233 78241 78259 78277 78283 78301 78307 78311
70051 70061 70067 70079 70099 70111 70117 70121 70123 70139
( Next testing 10. 27953 27961 27967 27983 27997 28001 28019 28027 28031 28051
61637 61643 61651 61657 61667 61673 61681 61687 61703 61717
n For more information on primes see https://primes.utm.edu/
The largest known prime number (as of January 2020) is 282,589,933 1, a number which has 24,862,048 digits when written in base 10. 81233 81239 81281 81283 81293 81299 81307 81331 81343 81349
A subset of Mersenne primes of the form 22p11 for prime p. 7, 127, 2147483647, 170141183460469231731687303715884105727 (primes in OEIS:A077586). This means that 1/4 or 1 in 4 numbers from 1-100 are prime. 10n+3: 3, 13, 23, 43, 53, 73, 83, 103, 113, 163, 173, 193, 223, 233, 263 (OEIS:A030431) 36887 36899 36901 36913 36919 36923 36929 36931 36943 36947
The fourth Smarandache-Wellin prime is the 355-digit concatenation of the first 128 primes that end with 719. These cookies will be stored in your browser only with your consent. 3911 3917 3919 3923 3929 3931 3943 3947 3967 3989
419 421 431 433 439 443 449 457 461 463
47737 47741 47743 47777 47779 47791 47797 47807 47809 47819
The first few prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23 and 29. Our Prime Number Charts page is similar to the prime number lists on this page but contains charts 3259 3271 3299 3301 3307 3313 3319 3323 3329 3331
2, 3, 17, 137, 227, 977, 1187, 1493 (OEIS:A042978). 69697 69709 69737 69739 69761 69763 69767 69779 69809 69821
Ten has four factors: 1, 2, 5 and 10. Is 1 a prime number? The Sieve of Erastosthenes is a method for finding what is a prime numbers between 2 and any given number. 41513 41519 41521 41539 41543 41549 41579 41593 41597 41603
100129 100151 100153 100169 100183 100189 100193 100207 100213 100237
29581 29587 29599 29611 29629 29633 29641 29663 29669 29671
28289 28297 28307 28309 28319 28349 28351 28387 28393 28403
Each guess must be a valid 5 digit prime number. 79087 79103 79111 79133 79139 79147 79151 79153 79159 79181
Rational numbers with denominators 7 and 13 have 6-digit repetends when expressed in decimal form, because 999999 is the smallest number one less than a power of 10 that is divisible by 7 and by 13, . However, you may visit "Cookie Settings" to provide a controlled consent. 22549 22567 22571 22573 22613 22619 22621 22637 22639 22643
47837 47843 47857 47869 47881 47903 47911 47917 47933 47939
with each donation! Primes p that do not divide the class number of the p-th cyclotomic field. Need help with printing or saving? These cookies ensure basic functionalities and security features of the website, anonymously.